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Abstract 
 

The Primordial Lithium problem of Big Bang Nucleosynthesis (BBN), a prediction of 7Li 
abundance which is considerably larger than observed, has important implications for the 
standard model of cosmology. Since 7Li is produced by the later decay of 7Be it is important to 
study the destruction of 7Be during the epoch of BBN, in order to examine possible reduction of 
the predicted abundance of 7Li, in particular the destruction of 7Be with neutrons. The high flux 
of 50 keV epithermal neutrons (1010 n/sec/cm2) produced by a Liquid Lithium (LiLiT) target at 
the Soreq Applied Research Accelerator Facility (SARAF) in Yavne, Israel offers opportunities 
for research at BBN energy. Due to the high intensity of the neutron flux at SARAF, background 
can be overwhelming for spectroscopic detectors.  

 
The plastic polymer CR-39 (poly allyl diglycol carbonate - PADC, C12H18O7) was chosen 

as a detector that can withstand the high neutron and associated gamma-ray flux. CR-39 Nuclear 
Track Detectors (NTD) have been calibrated for detection of alpha-particles and protons in a 
high neutron flux environment. These detectors can be used to detect damage caused by ionizing 
radiation on the plastic through a process of chemical etching. Charged particles leave behind a 
trademark path of chemical bonds broken by incoming ionized radiation. CR-39 is etched in a 
chemical bath of 6.25 N aqueous NaOH at 90o C for 30 minutes. Etching is expedited along the 
track of radiation damage, as compared to the bulk etching of the plastic, and a micron-sized 
“pit” is revealed as a permanent record of the charged particle that caused the damage. Pits have 
different characteristics depending on the temperature and strength of the etching solution and 
amount of time the CR-39 spends immersed in the solution. An etching time of 30 minutes was 
chosen to distinguish the pits of alpha-particles from those of protons, which require several 
hours in the chemical bath to produce fully developed pits.  

 
The pits on the CR-39 were imaged after etching using a camera attached to a 

microscope. Utilizing the motorized z-depth control of the microscope, a series of 11 images in 
1.5 µm increments are taken around the plane of best focus. The images of the pits can then be 
analyzed using an automated segmentation algorithm that is capable of picking up pits above 
background noise and returns morphological information about individual pits. The images of 
the circular pits were digitally processed and the radii were extracted to allow for measurement 
of the charged particle type and energy. 

 
CR-39s were irradiated by Rutherford backscattering of alpha-particles ranging in 

irradiation energies of 1.5 MeV to 9.5 MeV and protons of 1.4 MeV from a self-supporting thin 
100 µg/cm2 gold foil, along with alpha-particles from standard radioactive sources: 148Gd (3.18 
MeV), 241Am (5.49 MeV), 228Th (5.34-8.78 MeV). Background from reactions inside the CR-39 
was calibrated using a cold neutron beam to measure the 17O(n,α) reaction that occurs inside of 
the CR-39 along with 2.2 MeV background gamma-ray. A radii region of interest (1.4-3.4 µm) 
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was determined for detection of alpha-particles in the desired energy range (1.5-3.5 MeV) to 
study the interaction of neutrons with 7Be. The background reaction of 17O(n,α)14C that occurs 
within the CR-39 generates 1.4-1.7 MeV alpha-particles together with 0.6-0.3 MeV 14C. The 
background pits created by these reactions are the limiting factor for the measurement of small 
cross-sections, as determined by the calibration process. The measurement of small cross-
sections is the goal for understanding the destruction of 7Be in the 7Be(n,α) to further understand 
the Primordial Lithium problem. 
 



I. INTRODUCTION

Big Bang Nucleosynthesis (BBN) [1–3] occurred between 1 second, when neutrons and

protons fell out of equilibrium, to 103 seconds (20 minutes) after the Big Bang. This period

was marked by rapid cooling and expansion, during which temperatures dropped from 1

MeV, when the neutron was no longer in equilibrium with the proton, to 30 keV, where freeze

out of element production occurs. A few light nuclei other than hydrogen were formed during

BBN: 4He, deuterons, 3He, 7Li, and the unstable radioactive nuclei of 7Be and 3H. The one

free parameter of BBN is the baryon/photon ratio which has now been measured with high

precision by the Wilkinson Microwave Anisotropy Probe (WMAP) [4] and can now be used

to predict the abundance of the light nuclei formed during BBN. The predicted abundances

of 4He, deuteron, and 3He relative to hydrogen have been confirmed in good agreement with

the observed high precision astronomical observations of old globular cluster stars. Measured

abundance of 7Li, however, is a factor of 3-4 below BBN prediction, as demonstrated below

in Fig. 1. The cosmological implications of this problem make it an important issue to shed

light on.

Examining the rates of BBN nuclear-reactions is crucial to better understand the circum-

stances of the Primordial Lithium problem [5]. Since 7Li is the daughter isotope of 7Be, the

destruction rate of 7Be with neutrons in the 7Be(n,α)7Li reaction and the 7Be(n,γα) reaction

influences the observed abundance of 7Li in the early universe. If the destruction rate is

increased, the abundance of 7Li will be reduced. The destruction of 7Be and formation of

7Li occurred between the temperatures of 43-69 keV, which is highlighted in Fig. 2.

The Soreq Applied Research Accelerator Facility (SARAF) [6], at the Soreq Nuclear Re-

search Center in Yavne, Israel, produces a high intensity (∼1010 n/sec/cm2) of epithermal

∼ 50 keV neutrons generated from the interaction of protons with a flowing Liquid Lithium

target(LiLiT) [7, 8]. The neutron beams are produced in the 7Li(p,n)7Be reaction near

threshold by bombarding LiLiT with a 1-2 mA proton beam for a total of 3.11 mA Hr with

energy Ep = 1.935 MeV and energy spread of 15 keV. The resulting neutrons are confined

to the forward angles (<60◦) with a quasi-Maxwellian energy distribution [9, 10] with “ef-

fective temperature corresponding to the energy of kT = 49.5 keV. The quasi-Maxwellian

1



Deduced Primordial Abundance

FIG. 1: The Primordial 7Be problem: Observed Primordial Lithium abundance indicated in blue

lies a factor of 3-4 below abundance predicted by the standard model. Abundances of 4He, 2H,
3He lie in good agreement with standard model predictions. The volume of the baryon to photon

ratio measured by WMAP is indicated in the yellow vertical band.

FIG. 2: The production of light nuclei during BBN as a function of time and temperature. The

temperature range of interest for the 7Be(n,α)7Li is between 0.5-0.8 GK(43-69 keV).
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energy distribution of the neutron beam with effective temperature corresponding to 49.5

keV presents opportunities to conduct research at the very same conditions as the epoch of

BBN within the range of interest for studying the Primordial Lithium problem. However,

the background created by the high intensity neutron flux with an associated flux of 477

keV gamma-rays (∼1011 γ/sec) from the 7Li(p,pγ) reaction, and 14.6, 17.6 MeV gamma-rays

from the 7Li(p,γ) reaction (∼109 γ/sec), along with gamma-rays produced by the interac-

tion of neutrons with materials surrounding the target, causes difficulties for conventional

spectroscopic systems such as silicon detectors.

We chose in this experiment [6, 7] to use CR-39 Nuclear Track Detectors (NTD) pur-

chased from HomaliteTM for the detection of alpha-particles from the 7Be(n,α) interac-

tion. Accuracy in alpha-particle detection of the CR-39 was determined from the prototype

”demonstratition of principle” measurement of the cross-section of the 10B(n,α) reaction

(with a fluence of 4.6 x 109 neutrons) [13]. Charged particles impinging on the CR-39 break

chemical bonds in the plastic, and these trails of damage become visible after being etched

in NaOH, a caustic base. The trail of chemical bonds broken by the incoming radioac-

tive particle is etched more rapidly by the NaOH than the bulk of the plastic. Using the

microscopes shown in Fig. 3 one can then see the trail of damage, known as a “pit, with

characteristics, including radius, dependent on the energy and type of the charged particle.

Fig. 4 features two images showing both the depth of trail damage left by alpha-particles and

typical circular pits as seen from above, each captured with the Atomic Force Microscope

(AFM) shown in Fig. 3.

To use the CR-39 NTD for measuring alpha-particles emitted by the 7Be(n,α) reaction, a

series of calibration procedures had to be undertaken. CR-39 detectors were irradiated with

alpha-particle and proton beams of varying energies within the energy region of interest for

the 7Be(n,α) reaction.

The ground state of 7Be, 3/2−, is indicated in Fig. 5. Beryllium has 4 protons and 3

neutrons, with a neutron hole in P 3
2

shell. The s-wave interaction of neutron (spin of 1/2)

with the Beryllium 3/2− results in 1− or 2− states. The energy of the 1− state at 19.4 MeV

is far from the threshold (18.9 MeV) and it contributes very little. The 2− state at 18.91

is only 10 keV above threshold and it dominates the s-wave interaction; however, due to

3



FIG. 3: The Nikon TE-2000E fully automated inverted microscope used for image acquisition (left)

and the Atomic Force Microscope located at Bar Ilan University.

conservation of parity it cannot decay with alpha-particle emission. It instead decays with

gamma-rays. Therefore, the energies we expect and calibrate the NTD for are alpha-particles

of 9.5 Mev (degraded by aluminum foil to approximately 3.5 MeV), 8.4 MeV (degraded by

aluminum foil to approximately 3.3 MeV) and 1.5 MeV (stopped) [11]. The energy region

of interest for alpha-particles in the 7Be(n,α) experiment is 1.5-3.5 MeV. The high energy

alpha-particles(∼ 8.4 and 9.5 MeV expected from the 7Be(n,γα) reaction and 7Be(n,α)

reaction, respectively, as shown in Fig. 5, are degraded with a 25 µm aluminum foil to

energies ∼ 3.5 MeV.

The detectors were etched in a chemical bath of 6.25 N NaOH at 90◦ C for 30 minutes. The

standardized etching conditions allow the comparison between pits of different irradiation

particle types and energies. Freely available image processing software known as the Fiji

[14] distribution of ImageJ [15], was used to develop a segmentation algorithm that could

distinguish pits from background noise. Using the same algorithm on all detectors resulted

in the establishment of a radius region of interest (RRI) for the pits of 1.5-3.4 µm. The

4



FIG. 4: Images taken by Atomic Force Microscope (AFM) of typical alpha-particle pits on a CR-39

NTD, shown from above as circular objects (right) and as a side profile as tracks penetrating the

CR-39 (left).
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FIG. 5: The states in 8Be that are involved in the s-wave (shown in blue) and p-wave (shown in

green) interaction of neutrons with 7Be and the charged particles from the decay of these states.

In parenthesis we show the energy of the charged particles after traversing a 25 micron aluminum

foil.

background produced in the neutron and gamma-ray rich environment was also studied

using a 9Be phantom target.
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TABLE I: List of Reaction of Interest and Measured Byproducts

Interaction 7Be(n,α) 7Be(n,γα) 7Be(n,p) 17O(n,α) Neutron-
Scattering

Compton-
Scattering

Type signal signal backgrnd backgrnd backgrnd backgrnd
Measured
Product

α (degraded) α (degraded),
α

p α +14C n, p γ, x-ray, e

Energy
(MeV)

9.5 (∼3.5) ∼8.4 (∼3.0),
1.5

1.4 1.4 + 0.6,
1.7 + 0.3

0.001 - 0.18 2.2, 0.477,
14.6, 17.6,
0.069

Calibration
Source

148Gd VDG-RBS,
148Gd

VDG-RBS VDG-
RBS,
ILL(CN)

LiLiT,
9Be(n,n)

ILL(CN),
LiLiT,
RBS

II. EXPERIMENTAL PROCEDURE

A. Calibration

To calibrate the CR-39 plates for use as detectors in the 7Be(n,α) reaction, a series of

irradiations of the NTD alpha-particles and protons were completed. At the TUNL tandem

accelerator at Duke University, beams of 1.5-9.0 MeV alpha-particles irradiated the plates

via Rutherford backscattering off a thin 100 µg/cm2 gold foil. The setup is shown in Fig. 6;

note also the presence of a silicon detector to calculate the efficiency of the CR-39 NTD. A

further calibration of 1.5 MeV alpha-particles and 1.4 MeV protons was carried out with the

3 MV single ended van de Graff accelerator at the Weizmann Institute in Rehovot, Israel.

The detectors were also calibrated with alpha-particles from standard sources: 148Gd (3.18

MeV), 241Am (5.49 MeV), and 228Th (5.34-8.78 MeV).

The plates were etched in a standard 6.25 N NaOH aqueous solution heated on a hot

plate to maintain a stable 90◦C for 30 minutes. The CR-39s were mounted in the chemical

bath in a custom made holder which kept them fully submerged in the solution and separate

from each other during etching. This etching process results in circular, micron-sized pits

which are visible by microscope. The bulk etch rate of the CR-39 was measured by weighing

a non-irradiated CR-39 before and after etching. The rate was found to be relatively high,

approx. 10 µm per hour, due to the high temperature of the NaOH.

The CR-39s were scanned preliminarily with a simple biological microscope at the Lab-

6



Collimated

beam dump

Silicon

detector

197Au target

CR-39

Beam

FIG. 6: Schematic diagram of the experimental setup used at the TUNL at Duke University and

the 3 MV van de Graaff accelerator at the Weizmann Institute of Sciences.

oratory for Nuclear Science at UConn. Imaging of the etched CR-39 plates took place at

Bar Ilan University in Ramat Gan, Israel with a Nikon TE-2000E fully automated inverted

microscope (Fig. 3) set for brightfield imaging, controlled by NIS Elements software (version

4.3), through a 40X/NA = 0.6 LWD objective with correction collar set to zero cover-glass

thickness. Images were acquired with a QImaging Retiga 2000R cooled 2MP CCD camera.

Large areas (typically 2mm x 2mm), exceeding the field of view (FOV) of the objective were

acquired by capturing multiple fields stitched together with a 10% overlap. At each FOV,

stacks of 11 images with 1.5 micron inter-plane spacing (15 µm depth total) were taken

centered around the best focus plane for the pits. Non-uniform illumination and fixed arti-

facts on the camera/microscope lens were corrected for by taking a background illumination

image with no detector present. Subsequent image processing was done with the Fiji [14]

distribution of ImageJ [15]. Image processing steps included:

1. Non-uniform illumination and fixed artifacts are corrected for by dividing the images
of the pits by the background illumination image.

2. Image stacks are created with the background removed images. A minimum intensity
Z-projection of the 11-image stacks was taken to optimize the segmentation process
with more uniformly dark pits. At the best focus plane, the pits are seen as dark
circular objects. However, due to the concave shape of the pits, there is a second focus

7



plane with a visible bright spot in the middle of the pit. By taking a minimum intensity
Z-projection, the minimum pixel intensity [from 0(black) 255(white)] is chosen for the
values on each of the 11 focus planes. A single image is generated from the combined
minimum intensity pixels for each focus plane in the stack. Of note, the bright spot
could be a useful characteristic to consider in future analysis of pits using CR-39.

3. Minimum intensity images are stitched together using the Grid/Collection plugin [16]
that is part of the Fiji distribution. 10% overlap between frames during image ac-
quistion is accounted for in the stitching process. By stitching the images together,
large FOV of the CR-39 detector can be analyzed at one time using the segmentation
algorithm.

4. To analyze the pits, images must be converted to binary black images with white
pits, done in a process known as Thresholding. ImageJ and Fiji offer a variety of
Thresholding algorithms for the analysis of data. To achieve the desired thresholding
on the CR-39 detectors, the Threshold from Background function included with the
BAR plugin collection [17] was used. Criteria selection for pits was:

Pixel intensity more than two standard deviations above the estimated background
mean.

Minimum pit area of 45 pixels (1.57 µm2 with 40x microscope lens), indicating a
minimum radius of 0.7 µm.

Minimum roundness and circularity of 0.3 and 0.2, respectively.

5. BioVoxxel Toolbox [18] extended particle analyzer filtered the thresholded binary im-
ages on size, roundness, and circularity requirements and provided measurements of a
variety of morphological parameters, including area, perimeter, roundness, and circu-
larity.

Typical 40x magnification calibration images are seen in Fig. 7 and Fig. 8: the first of

alpha-particle pits from 148Gd with energy of 3.18 MeV and the second pits from 1.4 MeV

proton calibration (using RBS calibration). The observed pit radii spectra resulting from

the analysis of the irradiations with alpha-particles is displayed in Fig. 7. Following etching

conditions as described above, we note that the pits of the 3.18 MeV alpha-particles from

148Gd source are centered around radii of 2.8 microns (Fig. 7). We also observed that the

pits of 5.49 MeV alpha-particles (from 241Am source) have a similar shape as those shown in

Fig. 7, but the spectra is centered around the lower radius of 2.0 microns. It is well known

that the trend of increase and decrease of measured radii as a function of energy is strictly

dependent on etching conditions [19]. We also observed this trend for pits from the 228Th

alpha-source (5.34-8.78 MeV).

In Fig. 8 we show the spectra of pit radii from the 1.4 MeV proton calibration (via RBS).

The radii for the proton pits range from the minimum threshold of 0.7 micron to 1.4 micron.
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FIG. 7: Left: Typical pits observed after etching CR-39 plates exposed to 3.18 MeV alpha-particles

from a 148Gd source. A scale of 10 microns is shown. Right: The measured radii of pits in 6.7

mm2 from irradiation with alpha-particles from a 148Gd source (3.18 MeV) and RBS (1.4 MeV).

The background shown of the 148Gd source data was measured behind a thick aluminum foil that

stopped the 3.18 MeV alpha-particles.
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FIG. 8: Left: Typical pits observed for 1.4 MeV proton from the RBS calibration. A scale of

10 microns is shown. Right: The measured radii (∼ 1.0 µm) of pits observed in 0.15 mm2 from

irradiation with protons. The background was measured behind a thick aluminum foil that stopped

the protons.

17O(n,α)14C 

FIG. 9: Left: Typical pits observed with cold neutrons impinging on a bare CR-39 plate. A scale

of 10 microns is shown. Right: The measured radii (1.4 - 3.4 µm) of pits observed in 1.9 mm2 from

1.82 MeV deposited by α+14C from the 17O(n,α) reaction and Compton electrons (< 1.0 µm) from

the 2.2 MeV deuterium capture gamma-rays inside the CR-39 plate.
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The CR-39s irradiated with protons undergo all of the same processing as the alpha-particle

irradiated detectors. A standard etching time for irradiated plates at 90◦C was determined

by etching CR-39s in 10 minute intervals until we observed the expected number of fully

developed pits for the well-known alpha-particle source activity, at 30 minutes total etching

time. For the same 30 minute etching time, we observe only a fraction (∼10%) of expected

proton-pits calculated from the proton beam-target luminosity. The proton-pits that we do

observe are not yet well developed and smaller in radii than the determined RRI for alpha-

particles. Normally, etching times of several hours are used for proton irradiation [20]. By

using a 30 minute etch time we are able to inhibit the development of proton pits to a region

below 1.4 micron radii while allowing alpha-particle pits to fully develop.

The background spectra shown for the 148Gd and proton calibrations in Fig. 7 and Fig. 8

were measured behind a 50µm aluminum foil which stopped the 3.18 MeV alpha-particles

and 1.4 MeV protons. The measured background radii feature exponential behavior, al-

though with different slopes, displayed by the straight lines on the semi-log plots. Back-

grounds are found to be correlated with the dose of alpha-particles or protons. Every alpha-

particle is associated with 40 keV x-rays of 144Sm. Protons are associated with a larger flux

of 69 keV x-ray of gold. The aluminum absorber does not stop these x-rays, they continue

through to generate Compton electrons within the CR-39. It was observed that low energy

electrons generate small radii pits [21], similar to the low radii and high density of the spec-

tra displayed in Fig. 8. The low density of pits observed as background to the 148Gd source

shown in Fig. 7 allow us to conclude that the observed exponential behavior of background

pits is not a matter of merged pits or an artifact of the analysis, but instead most likely

produced by the Compton electrons. In Fig. 8, it is apparent that the background exceeds

the proton spectrum above 2.0 micron radii, where the observed proton yield drops by a

factor of more than a hundred. It is possible that we observe a sub-percentage contribution

from x-ray produced by protons in the aluminum stopper foil.

Based on the calibration measurements shown in Fig. 7 and Fig. 8, we chose to define a

conservative radii region of interest (RRI) for observing 1.5-3.5 MeV alpha-particles to be

1.4-3.4 microns. This RRI is well above the region where we observe an exponential rise in

background pits (below 1.0 micron) and is also sufficiently higher than the radii of proton-
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pits that extend to 1.4 micron radius. This conservative RRI does, however, result in a small

portion of the alpha-pits to be missed at around 1.0 micron radii, which is incorporated into

the calculation of total efficiency of the CR-39 plates.

Absolute detection efficiency of CR-39 NTD for detecting 3.18 MeV alpha-particles

from a calibrated 148Gd source (with absolute strength of±3.2%) was mesaured to be

93.3%±3.8%(stat) ±3.2%(calibration) ±3.5% (background and RRI). With a total uncer-

tainty of 6.1%, we find the absolute detection efficiency of alpha-particle pits on the CR-39

is close to 100%. Additionally, a high resolution silicon detector measured alpha-particles

from RBS with gold-foil within the TUNL measurement setup (Fig. 6) alongside the CR-

39 detectors. The number of pits observed by the CR-39 detectors was found to be in

good agreement with the measurement of the high resolution silicon detector from the RBS

measurement.

B. Cold Neutrons Measurement

The 17O(n,α)14C reaction is a known source of background [22] when using CR-39 plates

with neutrons, generating alpha-particles and 14C within the CR-39 (C12H18O7). To test

this concept, a bare CR-39 NTD was irradiated with cold neutron beams at the Institute

Lau Langevin (ILL) at Grenoble, France. These cold neutrons, below thermal energy at less

than 25 meV, are not capable of breaking molecular bonds (obvious from the fact that CR-

39 plastic is stable at room temperature). For this reason we can conclude that the CR-39

NTDs are not sensitive to direct cold neutron beam. The ILL cold neutron beam gamma-ray

background is below the environmental ambient gamma-background. Therefore, no charged

particles capable of producing tracks are present and any tracks found after etching the

CR-39 must be produced by the interaction of cold neutrons with carbon, hydrogen, and

oxygen. The 17O(n,α) reaction and the H(n,γ) reaction are of particular interest, with large

thermal cross section of 257 mb and 348 mb respectively.

The Q-value of the 17O(n,α) reaction is 1.82 MeV, leading to a pencil sharp calibration

line of 1.82 MeV deposited by the combined alpha-particle (1.41 MeV) and 14C (0.41 MeV),

as shown in Fig. 9. The observed signal from α+14C is in excellent agreement with the RRI
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of 1.4 - 3.4 micron determined by calibration measurements.

The thermal neutron cross section of the 17O(n,α) reaction is known to be 257 mb, and

the thermal equivalent total neutron fluence used in this measurement is 4 × 1014 n/cm2.

For the CR-39 area examined of 0.342 mm2 we obtain a total cold neutron fluence of 1.36×

1012 neutron. The molecular weight of CR-39 (C12H18O7) is 274 g/mol with a density of

1.3 g/cm3, hence a 1.0 micron thick layer of CR-39 contains 8 × 1014 17O /cm2 (0.038%

abundance). A 1.0 micron deep layer of CR-39 leads to 280 pits and the measured yield

shown in Fig. 9 of 2466 pits implies a CR-39 fiducial volume approximately 8.8 microns

deep. Therefore, we sample 8.8 microns of the CR-39 where nuclear tracks were produced

inside the CR-39. Without claiming a quantitative understanding of pits within the CR-39,

we instead note that the range of 1.41 MeV alpha-particles is 5.9 microns and the range

of 0.41 MeV 14C is 1.0 micron, hence the combined total length of the nuclear track of 6.9

microns is similar to our measured etch depth of approximately 5 microns. The deduced

sampling depth of 8.8 microns appears to be within reasonable expectation based on the

range and the depth of the etched CR-39. In conclusion, we find that the ILL measured pits

in the RRI of 1.4 - 3.4 microns are due to nuclear tracks produced by the 17O(n,α) reaction

inside the CR-39.

C. The 9Be “Phantom” Background

At SARAF, a 9Be “phantom” target was bombarded with epithermal neutrons to measure

background associated with the accelerator and the epithermal (49.5 keV) neutrons. In our

measurements of high energy 8.4-9.5 MeV alpha-particles from a 7Be target we do not

observe substantial deviation from the measured background [11]. Therefore it is of interest

to understand the source of the background in the in-beam measurement at SARAF with

epithermal (49.5 keV) neutrons.

As discussed above, the spectrum measured at ILL for radii above 1.4 micron is in good

agreement with the signal expected for the combined signal of α+14C from the 17O(n,α)14C

reaction inside the CR-39. The hydrogen to 17O ratio in CR-39 is 6,770, hence in the ILL

measurement we have 8700 H(n,γ)d captures for every 17O(n,α) reaction with cross sections

12



FIG. 10: Schematic diagram of the experimental setup used at SARAF.

10 μm

FIG. 11: Typical pits observed in-beam with neutrons impinging on the 9Be target. The scale of

10 microns is shown.
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FIG. 12: The radii of pits measured over 16.36 mm2 from the in-beam SARAF measurement with

epithermal neutrons and 9Be target. The radii region of interest (RRI) for alpha-particles (1.4 -

3.4 µm) is shown in hashed yellow.

of 348 mb and 257 mb, respectively. Hence a second major source of background in the cold

neutron measurement are the 2.2 MeV gamma-rays of deuterium. The half length of 2.2

MeV gamma-rays in CR-39 is approximately 150 mm, hence we expect a substantial flux of

high energy Compton electrons inside the 0.75 mm thick CR-39 plate. The pits with radii

below 1.4 micron that exhibit an exponential rise toward low radii cannot be due to alpha-

particles and we conclude they are due to the only remaining source of charged particles,

namely electrons produced by the 2.2 MeV gamma-rays.

The interaction and hence pits from MeV gamma-rays and electrons in CR-39 is not well

known, however as we discuss above low energy electrons were observed [21] to yield a high

density of pits with very small radii. We observe the same high density of small radii in the

cold neutron measurement, see Fig. 9. The proton calibration measurement shown in Fig. 8

exhibit similar high density of pits with small radii. As we discussed above the proton beam

leads to a large flux of 69 keV x-rays from the gold foil. We conclude that the exponential

rise at low radii observed in the cold neutron data and the proton calibration data is due to

Compton electrons from high energy gamma-rays or x-rays.
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D. Epithermal Neutrons (In-Beam) Measurement

An in-beam test of the CR-39 was performed at SARAF with the experimental setup

shown in Fig. 10. The in-beam test was carried out with a 9Be target in air, and it serves as

a test benchmark for the 7Be(n,α) measurement [11]. The neutron beams were produced by

bombarding LiLiT [7, 8] with 1-2 mA proton beam for a total of 3.11 mA Hr with energy

Ep = 1.935 MeV and energy spread of ±15 keV. The resulting neutrons are confined to

the forward angles (θ ≤ 60◦) with a quasi Maxwellian energy distribution [9, 10] with an

“effective temperature” corresponding to the energy of kT = 49.5 keV. The integrated beam

luminosity was measured with a fission chamber (not shown in Fig. 10) and by placing a

gold foil directly behind the detector setup, as shown in Fig. 10, and then measuring the

accumulated activity of the 412 keV line from the 197Au(n,γ) reaction with a well known

energy dependent cross section.

We used an 8 mm diameter 9Be target prepared at the Paul Scherrer Institute (PSI) by

electro-deposition on a 1.0 mm thick pure (99.999%) 5N aluminum backing [23]. The 9Be

target was enclosed on the front side with a 1.5 µm mylar foil, to reproduce the condition

with the 7Be target used for measuring the 7Be(n,α) reaction [11]. In addition, a 25 micron

pure 5N aluminum foil was placed in front of the CR-39 plates, as was done in the 7Be(n,α)

measurement [11] in order to stop the 1.4 MeV protons from the 7Be(n,p) reaction (Table

I).

The CR-39 NTD were placed behind a 6 mm diameter collimator made of 0.5 mm thick

pure 5N aluminum that was placed at a distance of 7 mm from the 9Be target (see Fig. 10).

Areas smaller than 16.5 mm2 (up to 4.6 mm diameter fiducial area) out of the available 28.3

mm2 (6 mm diameter) were used to analyze pits in the NTD in order to stay clear of the

edge of the collimator.

The CR-39 plates used in the in-beam measurement were etched and analyzed using the

exact same procedure as for the calibration measurement. Fig. 11 is a typical image of

the pits produced by the in-beam 9Be target experiment, featuring a high density of small

pits resembling the pit density observed in the proton calibration shown in Fig. 8 and the

cold neutron measurement shown in Fig. 9. In Fig. 12 the radii spectrum results from this
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FIG. 13: Measurements of the background of cold neutron irradiation at ILL and 9Be irradiation

at SARAF plotted together. With a normalization factor of the ILL data multiplied by 0.15, the

number of pits located in the RRI (1.4-3.4 µm) are in good agreement, leading us to conclude that

this is the background data to expect in measurement of 7Be(n,α) experiment.

experiment features an exponential rise in pits below 1.0 µm due to the Compton electrons

from the intense 0.477, 14.6 and 17.6 MeV gamma flux produced by the LiLiT as well as

“environmental” gamma rays produced by capture of neutrons on the surrounding materials

(including the CR-39 itself). The RRI (1.4-3.4µm), hashed in yellow, deviates significantly

from the exponential drop, and is dominated by pits produced by the 17O(n,α) reaction.

The results of the neutron beam on 9Be target in air experiment will be our background for

the 7Be(n,α) and the 7Be(n,γα) reactions [11].

E. Epithermal Neutrons (In-Beam) Results

In our attempt to understand the RRI shown in Fig. 12 we consider all possible neutron

reactions with all materials included in the experimental setup shown in Fig. 10. We conclude

that only the 17O(n,α) reaction with Q-value = +1.82 MeV, and the 14N(n,p) reaction with

Q-value = +0.625 MeV, are energetically possible. The small amount of 14N in the air, as

well as our short (30 minutes) etching time, lead to a negligible background of proton-pits

above 1.4 microns into the RRI of the alpha-pits. However the pits from the combined 1.4 -

1.7 MeV alpha-particles and 0.6 - 0.3 MeV 14C from the 17O(n,α)14C reaction (1 < En < 180

kev), are a major source of background, as demonstrated in our cold neutron measurement

discussed above. We note however, that in the case of cold neutrons the outgoing alpha-
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particles and 14C are mono-energetic (1.41 and 0.41 MeV, respectively), but in the case

epithermal neutrons the outgoing alpha-particles and 14C are emitted with a broad energy

distribution due to the kinematics.

To calculate the ratio of the 9Be irradiation with the cold neutron irradiation we must

consider: the area ratio (16.36 mm2 scanned for 9Be, 0.342 mm2 for cold neutron), the beam

fluence ratio (4.99 x 1013 n/sec/cm2 in 9Be reaction, 4 x 1014 n/sec/cm2 for cold neutron),

and the cross-section of the 17O(n,α) reactions in each experiment (3 mb for 9Be, 257 mb

for cold neutron). When these ratios are multiplied the result is a ratio of expected alpha-

particles from 9Be reaction to cold neutron reaction of 0.07 ±0.03. In Fig. 13 we show

comparison of the data normalized based on shape of spectra alone, with a normalization

ratio of 0.15 ± 0.05. Thus, the background data observed is in agreement with our prediction

based on the (very) different scanned areas, beam fluences, and cross-sections. This scaling

again demonstrates that the observed background is from the 17O(n,α) reaction inside the

CR-39.

III. CONCLUSION

In conclusion, we calibrated CR-39 NTD with protons and alpha-particles of energies

relevant to the reaction of 7Be(n,α) to study the Primordial 7Li problem of BBN, as shown

in Figure 1 and Table 1. We studied with cold neutrons the background signal produced

by reactions within the CR-39 by Compton electrons and 17O(n,α). An etching process was

developed to allow the full-development of alpha-particles while inhibiting the development

of proton pits. Through calibration measurements, a RRI of 1.4-3.4 µm was determined

for detection of alpha-particles of interest. We determined that this RRI is dominated

by background pits produced by the 17O(n,α) reaction occurring inside the CR-39. This

background reaction is the limiting factor for determining low cross-section of the 7Be(n,α).

This measurement of alpha-particle emission rate is an important step in undering the

17



Primordial Lithium problem [11].
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